Online Selection with Convex Costs

Xiaoqi Tan¹, Siyuan Yu¹, Raouf Boutaba²

¹University of Alberta, Canada

²University of Waterloo, Canada

MAMA Workshop June 6, 2022

Example 1: Online Knapsack

Achieve 1/3 of the best-possible profit (in hindsight)

Competitive Ratio (CR)

• A deterministic online algorithm is α -competitive if

$$\mathsf{Alg}(\sigma) \geq \frac{1}{\alpha} \cdot \mathsf{Opt}(\sigma), \quad \forall \sigma$$

• A randomized online algorithm is α -competitive if

$$\mathbb{E}[\mathsf{Alg}(\sigma)] \ge \frac{1}{\alpha} \cdot \mathsf{Opt}(\sigma), \quad \forall \sigma$$

$$\alpha = \max_{\sigma} \frac{\mathsf{Opt}(\sigma)}{\mathsf{Alg}(\sigma)}$$

$$\Rightarrow \alpha = \max_{\sigma} \frac{\mathsf{Opt}(\sigma)}{\mathbb{E}[\mathsf{Alg}(\sigma)]}$$

Worst-case competitive analysis

Example 2: k-max Search

- Selling k items for a sequence of buyers
- Each buyer $t = 1, 2, \dots, T$ makes an offer v_t
- Accept it and sell 1 item, or wait for next one
- Once sold, cannot be reclaimed

Profit (Opt) =
$$\frac{v_{10} + v_{14}}{v_1 + v_2} >$$

Profit (Alg)

e.g., k = 2, T = 14

Algorithmica 2009

Optimal Algorithms for k-Search with Application in Option Pricing

Julian Lorenz¹, Konstantinos Panagiotou², and Angelika Steger

e.g., k = 2, T = 14

Example 3: One-Way Trading

- To change 1 CAD for USD.
- Rates v_t are revealed sequentially

for
$$t = 1, 2, ..., T$$

- At step t: Trade x_t CAD for USD
- Maximize USD in the end.

Many variants...

Algorithmica 2001

Optimal Search and One-Way Trading Online Algorithms

R. El-Yaniv,¹ A. Fiat,² R. M. Karp,³ and G. Turpin⁴

May have multi-dimensional attributes (e.g., value and weight)

A 1-d scale value

• A set of T items (one at a time)

- Select a subset $S \subset T$ of items with possible constraints
- Maximize objective v(S)

NeurIPS 2021

Pareto-Optimal Learning-Augmented Algorithms for Online Conversion Problems

Bo Sun ECE, HKUST bsunaa@connect.ust.hk

Mohammad Hajiesmaili CICS, UMass Amherst hajiesmaili@cs.umass.edu Russell Lee CICS, UMass Amherst rclee@cs.umass.edu

Adam Wierman CMS, Caltech adamw@caltech.edu Danny H.K. Tsang ECE, HKUST eetsang@ust.hk

Online Selection Problems against Constrained Adversary

Zhihao Jiang¹ Pinyan Lu² Zhihao Gavin Tang² Yuhao Zhang³

ICML 2021

An Efficient Framework for Balancing Submodularity and Cost

Sofia Maria Nikolakaki Alina Ene Evimaria Terzi

SIGKDD 2021

Algorithmica 2001

Optimal Search and One-Way Trading Online Algorithms

R. El-Yaniv,¹ A. Fiat,² R. M. Karp,³ and G. Turpin⁴

Online selection problems

- A set of T items (one at a time)
- Select a subset $S \subset T$ of items with possible constraints
- Maximize objective v(S)

A New Variant: OSCC

- A set of T items (one at a time)
- Select a subset $S \subset T$ of items (with possible constraints)
- Maximize objective v(S)

OSCC: Online selection with <u>convex</u>

OSCC: Value-Cost Tradeoff

- A set of T items (one at a time)
- Select a subset $S \subset T$ of items (with possible constraints)
- Maximize objective v(S) f(S)

- A set of T items (one at a time)
- Select a subset $S \subset T$ of items -(with possible constraints)
- Maximize objective v(S)

Welfare Maximization with Production Costs: A Primal Dual Approach

Zhiyi Huang^{*} The University of Hong Kong zhiyi@cs.hku.hk

Anthony Kim[†] Stanford University tonyekim@stanford.edu

Mechanism Design for Online Resource Allocation: A **Unified Approach**

XIAOQI TAN, University of Toronto, Canada BO SUN, HKUST, Hong Kong, China ALBERTO LEON-GARCIA, University of Toronto, Canada YUAN WU, University of Macau, Macau, China DANNY H.K. TSANG, HKUST, Hong Kong, China

Games and Economic Behavior (2018)

OSCC and More Variants

SIGMETRICS 2020

Online Combinatorial Auctions for Resource Allocation with Supply Costs and Capacity Limits

Xiaoqi Tan, Alberto Leon-Garcia, Yuan Wu, and Danny H.K. Tsang

IEEE-JSAC 2020

In this setting: OSCC = k-max Sear

Setting (For Today)		
We do not know T , but assume $T \ge$		
	$\begin{array}{l} \underset{\{x_t\}_{\forall t}}{\text{maximize}} \\ \text{subject to} \end{array}$	$\sum_{t=1}^{T} v_t x_t - f\left(\sum_{t=1}^{T} x_t\right)$ $\sum_{t=1}^{T} x_t \le k,$ $t=1$ $x_t = \{0,1\}, \forall t.$
Imme		
ch with Convex Costs		Given a prie

Larger $\rho \implies$ Higher levels of uncertainty

We assume the knowledge of v_{\min} and v_{\max} , and define $\rho = v_{\max}/v_{\min}$

Time

 $\rho = v_{\rm max}/v_{\rm min}$

Theorem 1. TP_{λ^*} achieves the best-possible CR of all deterministic algorithms, denoted by α^* , if and only if $\lambda^* =$ $\{\lambda_0^*, \lambda_1^*, \cdots, \lambda_{\tau}^*, \cdots, \lambda_k^*\}$ is an admission threshold such that • $\lambda_0^* = \lambda_1^* = \cdots = \lambda_{\tau}^* = v_{\min}$ and $\lambda_k^* = v_{\max}$, where τ is the minimum integer in $\{0, 1, \dots, k-1\}$ such that $v_{\min}(\tau+1) - f(\tau+1) \ge \frac{f^*(v_{\min})}{\alpha^*}.$ (5)• $\{\alpha^*, \lambda_{\tau+1}^*, \lambda_{\tau+2}^*, \cdots, \lambda_{k-1}^*, \lambda_k^*\}$ is the unique set of $k - \tau + 1$ positive real numbers that satisfy the system of equations: $\alpha^{*} = \frac{f^{*}(\lambda_{\tau+1}^{*})}{v_{\min}(\tau+1) - f(\tau+1)} = \frac{f^{*}(\lambda_{\tau+1}^{*}) - f^{*}(\lambda_{\tau+1}^{*})}{\lambda_{\tau+1}^{*} - c_{\tau+2}} = \dots = \frac{f^{*}(\lambda_{k}^{*}) - f^{*}(\lambda_{k-1}^{*})}{\lambda_{k-1}^{*} - c_{k}}.$ (6)

Existence of many competitive TPs **Uniqueness** of optimal (deterministic) TP **Optimality** among all deterministic algs

$\frac{1 + \ln \rho}{\text{Strongly convex}}$

Higher level of uncertainty \implies worse performance (larger α^*)

Faster growth rate of cost \Rightarrow better performance (smaller α^*)

Worst-case performance

Higher level of uncertainty does not always lead to worse (empirical) <u>average performance</u>!!

Need for more research:

- Flaws of worst-case analysis -> beyond worst-case??
- Implication of different costs on real-world systems design??

Concluding Remarks

- A new variant of online optimization problem: online selection with convex costs

- Simple & intuitive algorithms, strong performance guarantees

- Interesting applications & open questions

Online Selection with Convex Costs

Xiaoqi Tan¹, Siyuan Yu¹, Raouf Boutaba²

¹University of Alberta, Canada

²University of Waterloo, Canada

MAMA Workshop June 6, 2022

Different arrival instances

- low2high: 1st half (250 items) low values (randomly sampled from $[v_{\min}, (v_{\min} + v_{\max})/2]$) and 2nd half high

- high2low: 1st half (250 items) high values (randomly sampled from $[(v_{min} + v_{max})/2, v_{max}]$) and 2nd half low

- random: all 500 items are randomly sampled from $[v_{\min}, v_{\max}]$

